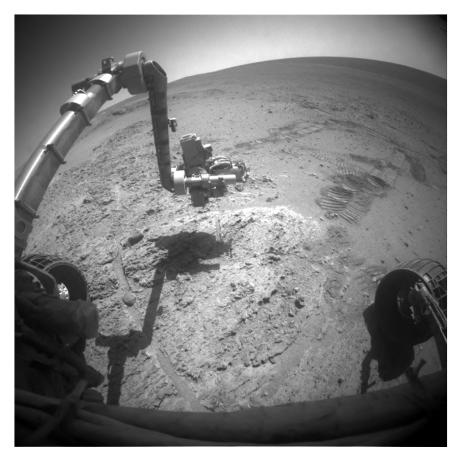


Introduction

- Multimission Image Processing Lab (MIPL) at JPL is responsible for (among other things) the ground-based operational image processing of all the recent in-situ Mars missions
 - Mars Pathfinder
 - Mars Polar Lander
 - Mars Exploration Rovers (MER)
 - Phoenix
 - Mars Science Lab (MSL)
- Most software is multimission, shared across all these missions
- Terrains and meshes are probably the most important products from MIPL for in-situ operations
 - XYZ data is source of Maestro/MSLICE range information
 - Science Planner tool
 - Rover Planners plan drives using meshes
 - Arm operators use reachability maps derived from XYZ and surface normals
 - Scientists use terrain data to analyze geomorphology, photometry, etc.



Linearization

- Linearization converts camera model to linear form
 - Removes fish-eye from hazcams, radial optical distortion
 - Straight lines in the world are straight on linearized images
 - Epipolar-aligns stereo images
 - In practice, results can be up to 5 lines off (Spirit front hazcams)
- Linearization Pros
 - Much simpler and faster to compute
 - Models are easier to use
 - 1-D correlators can be used, at least at reduced resolution
- Linearization Cons
 - Introduces interpolation noise into images
 - Therefore slightly less accurate
 - Results are not coregistered with EDR's
 - Linearization done w.r.t. a specific image; must be re-done for another stereo partner
 - e.g. standard vs. long-baseline stereo
- For MER, all terrain work is done with linearized images
 - Non-linearized terrains occasionally made as special products (for science requests)
- For MSL, baseline is to do both
 - Non-linearized terrains at low compute priority

Raw and Linearized Image

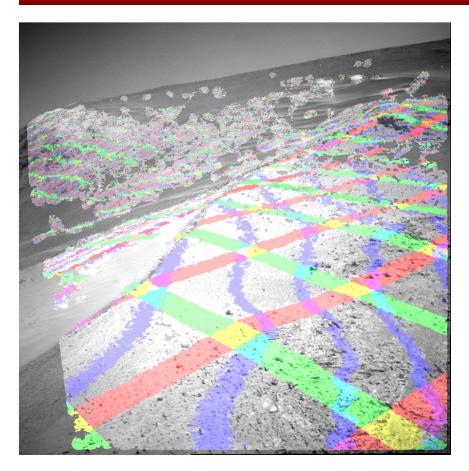
Opportunity front hazcam, sol 2819. Raw on left, linearized on right

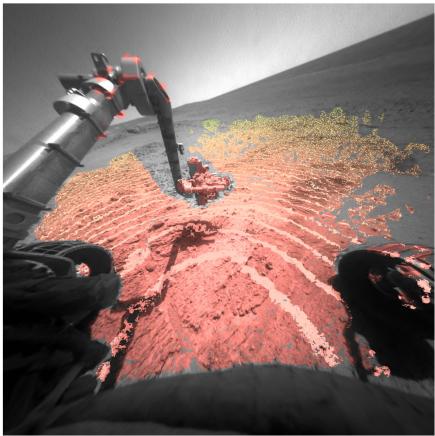
Terrain-Related Products

- Disparity maps
- XYZ point clouds
 - Primary product
- Range maps
- Surface normals
- Range error maps
 - New, still under development
- Slopes and slope-related maps
- Arm reachability maps
- Meshes

Algorithm Overview - Disparity

- 2-D correlation
 - Compensates for epipolar alignment errors
- Standard cross-correlation metric
- Uses modification of Gruen algorithm
 - Affine transform + xy terms to map template
 - Amoeba simplex minimization algorithm to determine parameters
- Consistency check of L->R and R->L correlations
 - New for MSL, being back-ported to MER
- Requires starting point for each pixel
 - Can be reduced resolution; pyramids up to full res
 - 1-D flight correlator at reduced resolution used most commonly
 - Can also use assumed surface, or reversed or unlinearized disparity
- More sophisticated algorithms possible (SIFT etc) but this works well
 - Much computer vision research assumes a man-made world
 - Assumptions such as linear walls or sharp corners do not apply
- Stereo only
 - Multi-view systems get incredible results but we're data rate limited
 - · Only on rare occasions do we get enough data to consider this
- Require calibrated cameras
 - Unconstrained techniques similarly require too much data




Algorithm Overview – XYZ Generation

- XYZ's generated by simple geometric triangulation from disparity
 - Project rays using camera models, find intersection (closest approach)
 - Chooses a point midway between the view rays at closest approach
 - Thus, point not exactly on either view ray
- Results refined using a series of filters to remove bad points
 - Missing correlation
 - Excessive raw or average line disparity
 - Not computable, diverging rays
 - Exceeding Z limits
 - Excessive miss distance or miss distance per range
 - Exceeding range limit (based on baseline)
 - Exceeding spike value (too far from neighbors in XYZ space)
 - Remove outliers (isolated points with not enough valid neighbors)

XYZ and Range Image

Left: Opportunity navcam, sol 2820; XYZ shows lines of constant X (red) and Y (green) at 1m spacing, with constant Z (blue) at 0.1m. Right: Front hazcam, sol 2819; range has 1m spacing

Algorithm Overview - others

JPL Multimission Instrument Processing Laboratory (MIPL)

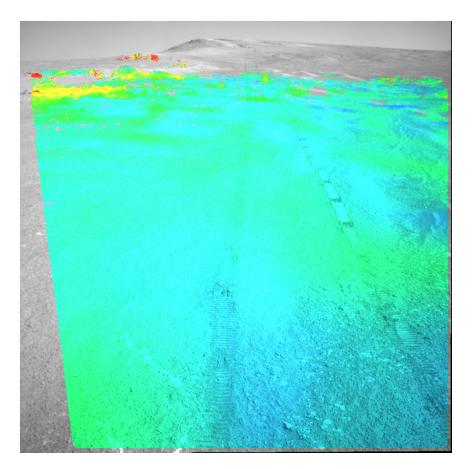
Range Maps

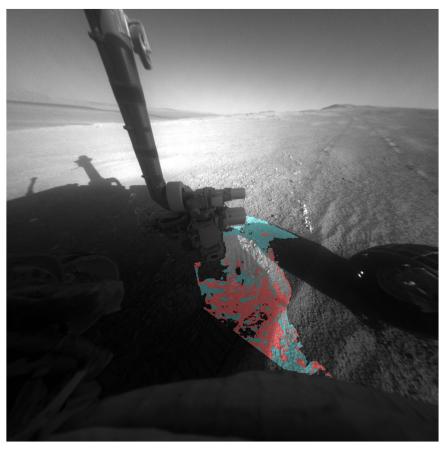
Simple Cartesian distance from camera to XYZ point

Surface Normals

- Fits plane to neighboring pixels, with consistency checks
- Computed on arm (instrument)-sized and rover-sized patches

Slope and Slope-Related Maps


- Computed from rover-sized surface normal
- Slope, slope heading, northerly tilt, solar energy, etc.


Arm Reachability Maps

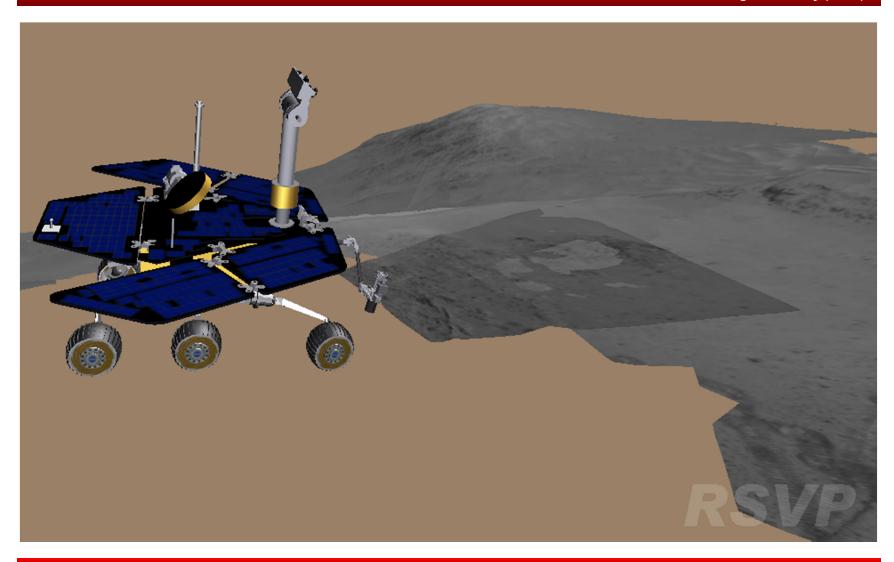
- Determines which pixels can be reached by each arm instrument
- Uses FSW arm kinematics and collision models
 - · Same algorithms as flight software uses for safety checks
- Based on XYZ and surface normal
- Also preload maps, surface roughness
- Contributed by arm FSW team

Slope and Reachability Image

Left: Slope from navcam, sol 2965. Colors indicate slope; 0-10 degrees is blue->red. Right: Arm reachability from front hazcam, sol 2965. Colors indicate different instruments or arm configurations.

Algorithm Overview - Range Error Maps

- New product, still under development
- Per-pixel error estimate
 - Both cross/down range, and axis-aligned
- Given disparity error, project perturbed rays to determine error volume
- Calculating disparity error is currently being worked on
 - Correlation coefficient
 - Compression level
 - Scene activity
 - **–** ... ?
- Eventually include terms for camera model error



Algorithm Overview – Meshes

- Converts XYZ point cloud to an octree representation
 - Facilitates merging of multiple XYZ images to unified mesh
- Creates polygonal (triangle) representation of surface
 - Extracts connectivity from XYZ image
 - Uses octree to achieve tiling and multiple resolutions
- Texture Mapping
 - Uses imagery as mesh "skin"
 - Camera model is used to transform 3D mesh vertex -> 2D image coords
 -> 2D UV texture coords
- Height map (DEM) also produced for driving simulations
 - Simple and fast lookup to settle the rover
- Mesh is in Open Inventor (MSL) or SGI Performer (MER) format
 - Tiled, multiple levels of detail, strips of triangles, binary format
 - Not easily usable by other tools
 - Converter to standard OBJ format is being implemented

Terrain Mesh

Automated Pipeline

- Creation of these products (and others not covered here) is handled by an automated pipeline
 - MER: Very large sh (Bourne shell) script
 - MSL: MATIS pipeline manager, written in Java around JBOSS JBPM.
- Pipelines are automated
 - Runs whenever data arrives, even if no operator
 - Exception: on MER, meshes must be manually started
 - Automated for MSL
- Private pipelines allow special products and configurable results

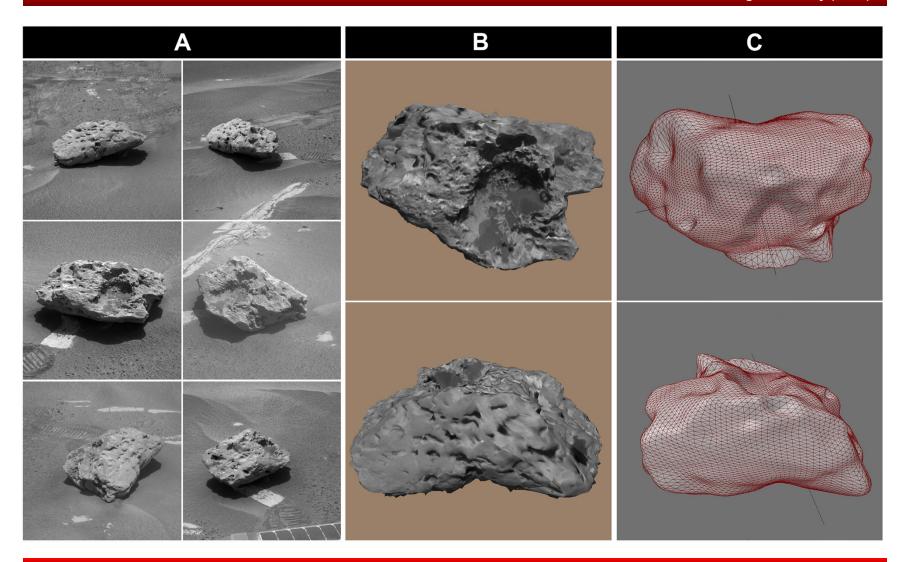
Orbital Imagery

- Meshes from HiRISE DEMO and Ortho projection map created using same tools
- Flat mesh (when DEM not available)
 - Texture mapping of Ortho projection into single polygon
 - Has proven tremendously valuable for planning long (~100m) drives of Opportunity across the mostly flat Meridiani plains
 - Localized to current Site frame, same as in-situ meshes
 - Used in RSVP (Rover Planner's visualization tool) just like standard meshes
- DEM-based HiRISE meshes
 - DEM is converted to point cloud
 - Need not be same scale as image
 - Generate synthetic camera model from high above for texture map
 - Baseline for MSI
 - Being deployed now for MER to aid navigation of Opportunity around Endeavor crater
 - Supports Slope and other overlays as texture maps

Orbital mesh w/slope overlay

JPL Multimission Instrument Processing Laboratory (MIPL)

Opportunity sol 2965. 0-20 degrees mapped to blue->red



Block Island Meteorite

- On Sols 1959-2009, Opportunity visited an interesting meteorite
 - Drove all the way around, taking pictures from 6 vantage points
- Images were combined into a single mesh
 - Extensive coregistration process
- Model was "shrink wrapped" to create solid volume
 - Volume was then estimated for science use
 - Chappelow, J.E. and M.P. Golombek, "Events and conditions that produced the iron meteorite Block Island on Mars", J. Geophys. Res., 115, E00F07, doi:10.1029/2010JE003666, 2010
- Multi-view analysis would have helped here

Block Island results

Conclusion

- The terrain generation suite has proven successful
 - Integral part of daily ops cycles for MPF, MER, PHX, MSL
- Work continues to improve it
 - Error metrics
 - Orbital meshes
 - Algorithm improvements
 - XYZ-based registration and alignment of overlap areas
 - More mesh formats
- Questions?
 - Bob.Deen@jpl.nasa.gov
 - Oleg.Pariser@jpl.nasa.gov